Building an Automated Scientist: Three stories of accelerating scientific discovery

Computer Science University of Texas at EI Paso

Dan DeBlasio

deblasiolab.org
(9) danfdeblasio

Modern science is computational

Modern science is increasingly computational.

- Particularly in genomics, where experiments have multiple computational steps.
- Domain problems have in turn lead to algorithmic advances.

More people are relying on computational tools.

Parameter Advising for Bioinformatics

Bioinformatics software

Common themes arise in bioinformatics (and many other domain) problems.

- Many are computationally inefficient to solve exactly.
- Many tools developed for these problems.
- Each tool has many parameters whose values have an impact on the output.

Tunable parameters

Quant
Perform dual-phase, mapping-based estimation of transcript abundance from RNA-seq reads
salmon quant options:
basic options:
-v [--version]
-h [--help]
-i [--index] arg
-I [--libType] arg
$-r[-$-unmatedReads] ar
-1 [--mates1] arg
-2 [--mates2] arg

- --discardOrphansQuasi
pint version string
produce help message
Salmon index
Format string describing the library type
List of files containing unmated reads of (e.g. single-end reads)
File containing the \#1 mates
File containing the \#2 mat

> ut quantification file
will be considered toward quantification estimates. The default behavior is to consider orphan mappings if no valid paired
--allowOrphansFMD ncrease sensitivity (allow more reads to map and more transcripts to be detected), but may decrease specificity as orphaned alignments are more likely to be spurious.

Perform sequence-specific bias correction.
[beta for single-end reads] Perform fragment T
The number of threads to use concurrently.
This option sets the prior probability that an alignment that disagrees with the specified library type (--libType) results from the true fragment origin. Setting this to 0 specifies that alignments that disagree with the library type should be "impossible", while setting it to 1 says that alignments that disagree with the library type are no less likely than those that do
-g [--geneMap] arg
File containing a mapping of transcripts to genes. If this file is provided Salmon will output both quant.sf and quant.genes.sf files, where the latter contains aggregated gene-level abundance estimates. The transcript to gene mapping should be provided as either a GTF file, or a in a simple tab-delimited format where each line contains the name of a ranscript and the gene to which it belongs separated by a tab. The extension of the file is used to determine how the file should be parsed. Files ending in '.gtf', '.gff' or '.gff3' are assumed to be in GTF format; files with any other extension are assumed to be in the simple format. in GTF/GFF format, the "transcript_id is assumed to contain the transcript dentifier and the gene_id is assumed to contain the corresponding gene identifie
$-z[--w r i t e M a p p i n g s][=a r g(=-)]$ If this option is provided, then the quasi-mapping results will be written out in SAM-compatible format. By default, output
will be directed to stdout, but an alternative file name can be provided instead.
If you're using Salmon on a metagenomic dataset, consider setting this flag to disable parts of the abundance estimation mode
that make less sense for metagenomic data

is passed in, the fragment length distribution is not taken into account when computing this probability

[experimental]: Don't consider concordance with the learned fragment length distribution when trying to determine the
hat a fragmebility than those with more likely lengths. When this flag is passed in, the observed fragment length has no effect on that fragment's a priori probability.
--noBiasLengthThreshold [experimental] : If this option is enabled, then no (lower) threshold will be set on how short bias correction can make effective

len

is can increase the precision of bias correction, but harm robustness. The default correction applies a threshold.
-numBiasSamples arg Number of fragment mappings to use when learning the sequence-specific bias model
The first <numAuxModelSamples> are used to train the auxiliary model parameters (e.g. fragment length distribution, bias, etc.) fixed.
-numPreAuxModelSamples arg The first <numPreAuxModelSamples> will have their assignment likelihoods and contributions to the transcript abundances computed without applying any auxiliary models. The purpose of ignoring the auxiliary models for the first <numPreAuxModelSamples> observations is to avoid applying these models before thier parameters have been learned sufficiently well.
--useVBOpt
-rangeFactorizationBins arg Factorizes the likelihood used in quantification by adopting a new notion of equivalence classes passes.
Factorizes the likelinood used in quantification by adopting a new notion of equivalence classes based on the conditional probabilities with which fragments are generated from different transcripts. This is a more fine-grained factorization than the normal rich equivalence classes. The default value (0) corresponds to the standard rich equivalence classes, and larger values imply a more fine-grained factorization. If range factorization is enabled, a common value to select for this parameter is 4.
-numGibbsSamples arg Number of Gibbs sampling rounds to perform.
-numBootstraps arg Number of bootstrap samples to generate. Note: This is mutually exclusive with Gibbs sampling.
--thinningFactor arg Number of steps to discard for every sample kept from the Gibbs chain. The larger this number, the less chance that subsequent samples
-q [--quiet]
--perTranscriptPrior
--vbPrior arg Be quiet whiled, but the slower sampling becomes.

Be quiet while doing quantification (don't write informative output to the console unless something goes wrong)
The prior (either the default or the argument provided via --vbPrior) will be interpreted as a transcript-level prior (i.e. each transcript will be given a prior read count of this value)
The prior that will be used in the VBEM algorithm. This is interpreted as a per-nucleotide prior, unless the --perTranscriptPrior flag
Write the transcripts that are linked by orphaned reads.
-writeOrphanLinks
rite the transcripts that are linked by orphaned reads.
nmapped names.txt in the auxiliary directory.
$-x[-$-quasiCoverage] arg [Experimental]: The fraction of the read that must be covered by MMPs (of length >=31) if this read is to be considered as "mapped" This may help to avoid "spurious" mappings. A value of 0 (the default) denotes no coverage threshold (a single 31-mer can yield a mapping) Since coverage by exact matching, large, MMPs is a rather strict condition, this value should likely be set to something low, if used.

Tunable parameters

Tunable parameters

Tunable parameters

Most users rely on the default parameter settings,

- which are meant to work well on average,
- but the most interesting examples are not typically "average".

Tunable parameters

Most users rely on the default parameter settings,

- which are meant to work well on average,
- but the most interesting examples are not typically "average".


```
... gsvenrarlvlevvdavcnewsad-RIGIRVSPigtfqnvdngpnee--adalyl---
... ydfeatekllke-----vftfftk-PLGVKLPPyf---------------dlvimfim ...
alternate ... gsienrarftlevvdalveaighe-KvGLRLSPygvfnsmsggaetgivaqyayvage
... gslenrarfwletlekvkhavgsdcAIATRFGV-----------------dtvygpgq
... tdpevaaalvka-----ckavskv-PLYVKLSPnvt--------------divpiaka ...
```

The default parameter choices misaligns this region of the sequences.

Tunable parameters

It's not just a problem in computational biology!

SATzilla: Portfolio-based Algorithm Selection for SAT

$\operatorname{Lin~Xu}$

Frank Hutter
Holger H. Hoos
Kevin Leyton-Brown
Department of Computer Science
University of British Columbia
201-2366 Main Mall, BC V6T 1Z4, CANADA

Concertio Launches Optimizer Studio to Help Performance Engineers and IT Professionals Achieve Peak System Performance
xulin730@cs.ubc.cA
HUTTER@CS.UBC.CA
HOOS@cs.ubc.cA
KEvinlb@cs.ubc.cA
by admin | Feb 22, 2018 | News 10 comments

ParamILS: An Automatic Algorithm Configuration Framework

Frank Hutter
Holger H. Hoos
Kevin Leyton-Brown
University of British Columbia, 2366 Main Mall
Vancouver, BC, V6TIZ4, Canada
Thomas Stützle
Université Libre de Bruxelles, CoDE, IRIDIA
Av. F. Roosevelt 50 B-1050 Brussels, Belgium
Swarm and Evolutionary Computation 1(2011) 19-31

Invited paper
Parameter tuning for configuring and analyzing evolutionary algorithms A.E. Eiben*, S.K. Smit

ARTICLEINFO ABSTRACT
hUTTER@CS.UBC.CA
Hoos@cs.ubc.c
kevinlb@cs.ubc.c

STUETZLE@ULB.AC.BE

Parameter advising framework

Steps of advising:

Parameter advising framework

Steps of advising:

- An advisor set of parameter choice vectors is used to obtain candidates.

Parameter advising framework

Steps of advising:

- An advisor set of parameter choice vectors is used to obtain candidates.
- Solutions are ranked based on the accuracy estimation.

Parameter advising framework

Steps of advising:

- An advisor set of parameter choice vectors is used to obtain candidates.
- Solutions are ranked based on the accuracy estimation.
- The highest ranked candidate is returned.

Parameter advising framework

Steps of advising:

- An advisor set of parameter choice vectors is used to obtain candidates.
- Solutions are ranked based on the accuracy estimation.
- The highest ranked candidate is returned.

Parameter advising framework

Steps of advising:

- An advisor set of parameter choice vectors is used to obtain candidates.
- Solutions are ranked based on the accuracy estimation.
- The highest ranked candidate is returned.

Parameter advising framework

Components of an advisor:

- An advisor set of parameter choice vectors.
- An advisor estimator to rank solutions.

Parameter advising framework

Components of an advisor:

- An advisor set of parameter choice vectors.

A good advisor set:

- Small
- Representative
- An advisor estimator to rank solutions.

Parameter advising framework

Components of an advisor:

- An advisor set of parameter choice vectors.
- An advisor estimator to rank solutions.

```
A good advisor estimator
    - Efficient
    - Rank Solutions Well
```


Multiple sequence alignment

A fundamental problem in bioinformatics.

- NP-Complete
- many popular aligners
- many parameters whose values affect the output
- no standard metric for measuring accuracy without ground truth
$\left.\begin{array}{|l|l|}\hline \begin{array}{l}\text { Input Sequences } \\ \text { AGTPNGNP } \\ \text { AGPGNP } \\ \text { AGTTPNGNP } \\ \text { CGTPNP } \\ \text { ACGTUNGNP }\end{array} & \rightarrow \text { Aligner }\end{array} \rightarrow \begin{array}{l}\text { Aligned Sequences } \\ \text { A-GT-PNGNP } \\ \text { A-G--P-GNP } \\ \text { A-GTTPNGNP } \\ - \text { CGT-PN--P } \\ \text { ACGT-UNGNP }\end{array}\right]$

Accuracy estimation

Alignment accuracy is measured with respect to a reference alignment.

Accuracy estimation

Alignment accuracy is measured with respect to a reference alignment.

reference alignment	computed alignment
a E h s \ldots	a D C - s
dS R - d	$\cdots \mathrm{c}$. $\mathrm{C}-\mathrm{d}$
.. aSHlt ...	a S-Hlt

Accuracy estimation

Alignment accuracy is measured with respect to a reference alignment.

reference alignment	computed alignment
a E h s ...	$\cdots \mathrm{a}$ - h - s
d S R - d \cdots	dS R - - d
aSHIt	$\cdots \mathrm{a}-\mathrm{Hl}$ l

- accuracy is the fraction of substitutions from the reference that are in the computed alignment,

Accuracy estimation

Alignment accuracy is measured with respect to a reference alignment.

reference alignment
$\begin{aligned} & a \mathrm{D} \\ & \mathrm{E} / \mathrm{h} \mathrm{~s} \\ & \mathrm{~d} \end{aligned}$

computed
alignment
a D E $\mathrm{h}-\mathrm{s}$
d SR- - d
aS - H l t

- accuracy is the fraction of substitutions from the reference that are in the computed alignment,

Accuracy estimation

Alignment accuracy is measured with respect to a reference alignment.

reference alignment	computed alignment
a DEhs	a DEh-s
dSR -d.	dSR--d
aSHlt	a S - $\mathrm{H}^{\text {l }}$

- accuracy is the fraction of substitutions from the reference that are in the computed alignment,

Accuracy estimation

Alignment accuracy is measured with respect to a reference alignment.

reference alignment	computed alignment
a E h s ...	$\cdots \mathrm{a}$ - h - s
d S R - d \cdots	dS R - - d
aSHIt	$\cdots \mathrm{a}-\mathrm{Hl}$ l

- accuracy is the fraction of substitutions from the reference that are in the computed alignment,

Accuracy estimation

Alignment accuracy is measured with respect to a reference alignment.

```
reference
alignment
a D E h s
d S R - d
a SHlt
    \uparrow \uparrow
```

computed alignment
a D Eh-s
dSR--d
a S - H l t

- accuracy is the fraction of substitutions from the reference that are in the computed alignment,
- measured on the core columns of the reference.

Accuracy estimation

Alignment accuracy is measured with respect to a reference alignment.

```
reference
alignment
a D E h s
d S R - d
a SHlt
    \uparrow \uparrow
```

computed alignment

```
a D Eh-s
d S R - - d
```

66\%
Accuracy
a S - H l t

- accuracy is the fraction of substitutions from the reference that are in the computed alignment,
- measured on the core columns of the reference.

Accuracy estimation

Our estimator Facet ("Feature-based ACcuracy EsTimator")

- a polynomial on feature functions
- efficiently learns the coefficients from examples
- uses efficiently computed novel features

Accuracy estimation

Our estimator Facet ("Feature-based ACcuracy EsTimator")

- a polynomial on feature functions
- efficiently learns the coefficients from examples
- uses efficiently computed novel features

Feature functions are the key:
uninformative features \rightarrow uninformative estimator

Accuracy estimation

The estimator $E(A)$ is a polynomial in the feature functions $f_{i}(A)$.

Accuracy estimation

The estimator $E(A)$ is a polynomial in the feature functions $f_{i}(A)$.
linear estimator

$$
E(A):=\sum_{i} c_{i} f_{i}(A)
$$

Accuracy estimation

The estimator $E(A)$ is a polynomial in the feature functions $f_{i}(A)$.
linear estimator

$$
E(A):=\sum_{i} c_{i} f_{i}(A)
$$

quadratic estimator

$$
E(A):=\sum_{i} c_{i} f_{i}(A)+\sum_{i} \sum_{j} c_{i j} f_{i}(A) f_{j}(A)
$$

Always linear in the coefficients.

Learning the estimator

We learn the estimator using examples consisting of

- an alignment, and
- its associated true accuracy.

Learning the estimator

We learn the estimator using examples consisting of

- an alignment, and
- its associated true accuracy.

Learning finds optimal coefficients that either fit

- accuracy values of the examples, or
- accuracy differences on pairs of examples,
- by solving a linear or quadratic program.

Learning the estimator

We learn the estimator using examples consisting of

- an alignment, and
- its associated true accuracy.

Learning finds optimal coefficients that either fit

- accuracy values of the examples, or
- accuracy differences on pairs of examples,
- by solving a linear pr quadratic program.

Learning the estimator

$$
\begin{aligned}
& e_{a, b} \geq E(b)-E(a)=\sum_{i} c_{i}\left(f_{i}(b)-f_{i}(a)\right) \\
& e_{a, b} \geq 0
\end{aligned}
$$

$\forall a, b \in$ Examples:
Accuracy (a) > Accuracy (b)

Learning the estimator

Minimize

$$
\sum_{a, b \in \text { examples }} w_{a, b} e_{a, b}
$$

Subject to:

$$
\begin{aligned}
& e_{a, b} \geq E(b)-E(a)=\sum_{i} c_{i}\left(f_{i}(b)-f_{i}(a)\right) \\
& e_{a, b} \geq 0
\end{aligned}
$$

$\forall a, b \in$ Examples:

Feature functions

We use protein alignment feature functions that

- are fast to evaluate,
- measure novel properties,
- use non-local information,
- involve secondary structure.

Feature functions

There are three types of secondary structure

Feature functions

There are three types of secondary structure

- a-helix,

Feature functions

There are three types of secondary structure

- a-helix,
- β-strand,

Feature functions

There are three types of secondary structure

- a-helix,
- β-strand,
- coil.

Feature functions

Features based only on the input alignment

- Amino Acid Identity
- Average Substitution Score
- Information Content
- - - -

Feature functions

Features based only on the input alignment

- Amino Acid Identity
- Average Substitution Score
- Information Content

Features using predicted secondary structure

- Secondary Structure Percent Identity
- Secondary Structure Agreement
- Secondary Structure Blockiness
- ...

Secondary structure blockiness


```
A
```



```
kILW|M
```


mek catck
 1 m

[DWK RECOMB2012/DK JCB2012] 23

Secondary structure blockiness

A block B in alignment A is

```
\begin{tabular}{|c|c|c|c|}
\hline W開囯 & & & － \\
\hline  & 悀 &  & \(\cdots\) \\
\hline  &  &  & \\
\hline  &  &  & 同 \\
\hline  &  &  & ctic \\
\hline  &  &  & d \\
\hline  &  &  & \\
\hline  &  &  & \\
\hline & & & \\
\hline
\end{tabular}

\section*{Secondary structure blockiness}
\(A\) block \(B\) in alignment \(A\) is
- an interval of at least / columns,


\section*{Secondary structure blockiness}
\(A\) block \(B\) in alignment \(A\) is
- an interval of at least / columns,
- a subset of at least \(k\) rows,


\section*{Secondary structure blockiness}
\(A\) block \(B\) in alignment \(A\) is
- an interval of at least / columns,
- a subset of at least \(k\) rows,
- with the same secondary structure for all residues in \(B\).


\section*{Secondary structure blockiness}
\(A\) block \(B\) in alignment \(A\) is
- an interval of at least / columns,
- a subset of at least \(k\) rows,
- with the same secondary structure for all residues in \(B\).


\section*{Secondary structure blockiness}
\(A\) block \(B\) in alignment \(A\) is
- an interval of at least / columns,
- a subset of at least \(k\) rows,
- with the same secondary structure for all residues in B.


\section*{Secondary structure blockiness}

A packing \(P\) for alignment \(A\) is


[DWK RECOMB2012/DK JCB2012] 24

\section*{Secondary structure blockiness}

A packing \(P\) for alignment \(A\) is
- a set of blocks from A,


[DWK RECOMB2012/DK JCB2012] 24

\section*{Secondary structure blockiness}

A packing \(P\) for alignment \(A\) is
- a set of blocks from A,
- whose columns are disjoint.
\begin{tabular}{|c|c|c|c|}
\hline cese &  &  &  \\
\hline
\end{tabular}

```

[DWK RECOMB2012/DK JCB2012] 24

```

\section*{Secondary structure blockiness}

A packing \(P\) for alignment \(A\) is
- a set of blocks from A,
- whose columns are disjoint.

The value of P is the number of substitutions it contains.



\section*{Secondary structure blockiness}

A packing \(P\) for alignment \(A\) is
- a set of blocks from A,
- whose columns are disjoint.

The value of \(P\) is the number of substitutions it contains.
The Blockiness feature is the maximum value of any packing.


\section*{Secondary structure blockiness}

Theorem (Evaluating Blockiness)
Blockiness can be computed in O(mn) time, for an alignment with m rows and n columns.

Algorithm translates the problem into finding the longest path in a directed acyclic graph.

\section*{Accuracy estimation}

Best features trend well with accuracy.





Facet estimator has less spread than its features.

\section*{Accuracy estimation}

For parameter advising, an estimator should have high slope and low spread.

high slope,
high spread

low slope,
low spread

medium slope, low spread

Facet's slope and spread is best for advising

\section*{Exploiting non-linearity}

While we designed the features to scale linearly with accuracy, some show some non-linear behavior when plotted.
- Advanced machine learning allowed for the use of a neural network predictor.
- We also produced a much larger training set (now \(>14 \mathrm{M}\) alignments).


\section*{Exploiting non-linearity}

Previous Result


Neural Network


\section*{Linear Regression}


Modern techniques and larger training also lead to a more accurate linear model.

\section*{Advising for Multiple Sequence Alignment}



Facet-NN and Facet-LR outperform original Facet on the advising task.

\section*{Transcript assembly}

TA is fundamental in transcriptomics.
- It's computationally difficult.
- It's easily impacted by choices of parameter values.
- There is no readily available way to confirm an assembly's accuracy.
reference genome



\section*{Transcript assembly}

For the human genome there is a reference transcriptome.
- Contains a large set of biologically verified transcripts.
- More than will be seen in a single experiment.
- Missing novel transcripts for any given experiment.

\section*{Transcript assembly}

For the human genome there is a reference transcriptome.
- Contains a large set of biologically verified transcripts.
- More than will be seen in a single experiment.
- Missing novel transcripts for any given experiment.

Area Under the Curve (AUC) can be calculated using the reference transcriptome.
- Map assembled transcripts to the reference.

\section*{Transcript assembly}

For the human genome there is a reference transcriptome.
- Contains a large set of biologically verified transcripts.
- More than will be seen in a single experiment.
- Missing novel transcripts for any given experiment.

Area Under the Curve (AUC) can be calculated using the reference transcriptome.
- Map assembled transcripts to the reference.
- Threshold the quality score from the assembler to get precision/sensitivity.


\section*{Transcript assembly}

For the human genome there is a reference transcriptome.
- Contains a large set of biologically verified transcripts.
- More than will be seen in a single experiment.
- Missing novel transcripts for any given experiment.

Area Under the Curve (AUC) can be calculated using the reference transcriptome.
- Map assembled transcripts to the reference.
- Threshold the quality score from the assembler to get precision/sensitivity.


\section*{Transcript assembly}

For the human genome there is a reference transcriptome.
- Contains a large set of biologically verified transcripts.
- More than will be seen in a single experiment.
- Missing novel transcripts for any given experiment.

Area Under the Curve (AUC) can be calculated using the reference transcriptome.
- Map assembled transcripts to the reference.
- Threshold the quality score from the assembler to get precision/sensitivity.


\section*{Transcript assembly}

For the human genome there is a reference transcriptome.
- Contains a large set of biologically verified transcripts.
- More than will be seen in a single experiment.
- Missing novel transcripts for any given experiment.

Area Under the Curve (AUC) can be calculated using the reference transcriptome.
- Map assembled transcripts to the reference.
- Threshold the quality score from the assembler to get precision/sensitivity.


\section*{Transcript assembly}

For the human genome there is a reference transcriptome.
- Contains a large set of biologically verified transcripts.
- More than will be seen in a single experiment.
- Missing novel transcripts for any given experiment.

Area Under the Curve (AUC) can be calculated using the reference transcriptome.
- Map assembled transcripts to the reference.
- Threshold the quality score from the assembler to get precision/sensitivity.


\section*{Transcript assembly}

For the human genome there is a reference transcriptome.
- Contains a large set of biologically verified transcripts.
- More than will be seen in a single experiment.
- Missing novel transcripts for any given experiment.

Area Under the Curve (AUC) can be calculated using the reference transcriptome.
- Map assembled transcripts to the reference.
- Threshold the quality score from the assembler to get precision/sensitivity.


\section*{Transcript assembly}

For the human genome there is a reference transcriptome.
- Contains a large set of biologically verified transcripts.
- More than will be seen in a single experiment.
- Missing novel transcripts for any given experiment.

Area Under the Curve (AUC) can be calculated using the reference transcriptome.
- Map assembled transcripts to the reference.
- Threshold the quality score from the assembler to get precision/sensitivity.
- Commonly used to compare assembler quality.


\section*{Transcript assembly advising}

Advisor estimator:
- area under the curve


\section*{Transcript assembly advising}

Advisor estimator:
- area under the curve

Advisor set:
- the number of tunable parameters is very large
- cannot exhaustively explore the space to find representative parameter vectors


\section*{Finding an advisor set}

Use information about parameter behavior to guide advisor set construction.
- Tested the influence of each parameter.
- Single maximum in the regions tested.


\section*{Finding an advisor set}

Use information about parameter behavior to guide advisor set construction.
- Tested the influence of each parameter.
- Single maximum in the regions tested.
- Many parameters influence AUC.










\section*{Finding an advisor set}

Parameter curve smoothness and single maxima help parameter selection.
- Iterative optimization will work well.
- Process is slow.

[DKK, WCB@ICML 2019]

\section*{Finding an advisor set}

We can use coordinate ascent to find optimal parameter vectors.
- Training samples should cover the range of expected input.
- Settings are found for all 18 tunable parameters.
- Collection of produced vectors is advisor set.


\section*{Finding an advisor set}

We can use coordinate ascent to find optimal parameter vectors.
- Training samples should cover the range of expected input.
- Settings are found for all 18 tunable parameters.
- Collection of produced vectors is advisor set.
- The set is precomputed and doesn't impact the advising time.


\section*{Scallop advising}


\section*{Scallop advising}
- all aligned RNA-seq from ENCODE
- variety of aligners
- example of performance in general


\section*{Scallop advising}
- 1595 RNA-Seq from SRA
- aligned using STAR
- example of high-throughput performance


\section*{Genome Assembly}

The first step in many genomic analyses is to map the reads from the individual to a reference genome.

Once the reads are mapped, we can identify the changes between the input and the reference.


Unlike transcript assembly, no ground truth,
- unless we use simulation.

\section*{Genome Assembly}

Two simulated datasets generated using different simulation parameters.

Parameter vectors with only one parameter value changed away from its default.

BWA can be improved significantly, but only if the parameter choice changes are selected carefully


\section*{Genome Assembly}

To explore the parameter space we
- use a polynomial accuracy estimator
- with the parameters of BWA as the input features,
- and an active learning approach.

Each vertical position is one learning instance
- find the highest predicted accuracy parameter vector,

- run assembly and add to training,
- repeat until prediction is correct.

Minimizer Schemes for Genome Analysis

\section*{Sequence Similarity}

Sequence similarity is used in many contexts:
- comparing web pages
- suggestion systems
- finding plagiarism
- matching sequencing reads
- binning genetic material


\section*{Minimizer Schemes}

Roberts, et al. (2004) introduced minimizer schemes as a way to decrease the time needed for sequence overlap computation


\section*{Minimizer Schemes}

Roberts, et al. (2004) introduced minimizer schemes as a way to decrease the time needed for sequence overlap computation


\section*{Minimizer Schemes}

Roberts, et al. (2004) introduced minimizer schemes as a way to decrease the time needed for sequence overlap computation


\section*{Minimizer Schemes}

Roberts, et al. (2004) introduced minimizer schemes as a way to decrease the time needed for sequence overlap computation


\section*{Minimizer Schemes}

Roberts, et al. (2004) introduced minimizer schemes as a way to decrease the time needed for sequence overlap computation


\section*{Minimizer Schemes}

Roberts, et al. (2004) introduced minimizer schemes as a way to decrease the time needed for sequence overlap computation
\(\mathrm{O}\left(\mathrm{n}^{2}\right)\) alignments!


\section*{Minimizer Schemes}

Roberts, et al. (2004) introduced minimizer schemes as a way to decrease the time needed for sequence overlap computation


\section*{Minimizer Schemes}

Minimizer schemes have two special properties:
- two sequences with a long exact match must select the same \(k\)-mers
- there are no large gap between selected \(k\)-mers

\section*{Minimizer Schemes}

Minimizer schemes have two special properties:
- two sequences with a long exact match must select the same \(k\)-mers
- there are no large gap between selected \(k\)-mers

Use in \(k\)-mer counting, de Brujin graph construction, data structure sparsification, etc.

\section*{Minimizer Schemes}

For a windows of \(w\) consecutive \(k\)-mers from a sequence \(S\), a minimizer scheme selects the minimum according to an ordering \(o\) as a representative


\section*{Minimizer Schemes}

For a windows of \(w\) consecutive \(k\)-mers from a sequence \(S\), a minimizer scheme selects the minimum according to an ordering \(o\) as a representative
\(\qquad\)
\(\nabla\)
\(\nabla\)

\section*{Minimizer Schemes}

For a windows of \(w\) consecutive \(k\)-mers from a sequence \(S\), a minimizer scheme selects the minimum according to an ordering \(o\) as a representative


\section*{Minimizer Schemes}

An extra example
\[
\underbrace{\text { Sen }}_{\text {C C A A C C C B B B B C C }}
\]

C CAACCCB
CAACCCBB


\section*{Universal \(k\)-mer Set and Minimizer Ordering}

A universal \(\boldsymbol{k}\)-mer set induces a family of compatible minimizer orderings
- A universal \(k\)-mer set \(U_{k, w} \subseteq \Sigma^{k}\) is a set of \(k\)-mers such that any window of \(w\) consecutive \(k\)-mers must contain at least one element from the set


\section*{Universal \(k\)-mer Set and Minimizer Ordering}

A universal \(\boldsymbol{k}\)-mer set induces a family of compatible minimizer orderings
- A universal \(k\)-mer set \(U_{k, w} \subseteq \Sigma^{k}\) is a set of \(k\)-mers such that any window of \(w\) consecutive \(k\)-mers must contain at least one element from the set

Orderings based on universal sets have better
 performance then lexicographic or random orders \(\nabla\) [Marçais, et al. 2017]


\section*{Universal \(k\)-mer Set and Minimizer Ordering}

A universal \(\boldsymbol{k}\)-mer set induces a family of compatible minimizer orderings
- A universal \(k\)-mer set \(U_{k, w} \subseteq \Sigma^{k}\) is a set of \(k\)-mers such that any window of \(w\) consecutive \(k\)-mers must contain at least one element from the set

Orderings based on universal sets have better
 performance then lexicographic or random orders \(\nabla\) [Marçais, et al. 2017]

Recent work has shown that we can build universal sets for large \(k\) \& \(w\) (like those used in practice) from existing sets for small \(k \& w\)
 [DeBlasio, et al. 2019; Zheng, et al. 2020]

\section*{Storing a universal set is inefficient}

Stored using a sequence trie, high complexity leads to large files





\section*{Storing a universal set is inefficient}

Stored using a sequence trie, high complexity leads to large files

This was with just one UHS method, different methods will have different compressibility factors


\section*{Our proposed method}

Task -- learn the minimizer schemes using back propagation
- Our task is to create a network topology is complex enough to encode existing schemes, but not so complicated that it provides extreme training times.
- One issue that arises is that for small values of \(w\) and \(k\) there may not be enough information to train the network completely since there are only so many unique windows.


\section*{A note about Neural Networks}

Used Decision Trees and Dense Neural Networks.

The number of nodes to encode minimizers is significantly larger with decision trees than with neural network implementations.


\section*{Performance of the networks}



A trained model has a shorter k-mer lookup time and smaller memory footprint than a naïve implementation of minimizers.

\section*{Neural Networks for Object Identification}

\section*{Identifying attributes of satellites is non-trivial}

Hyperspectral (HSI) and polarization imaging systems are becoming available and provide geographical spatial diversity.

Accurate interpretation of these images may allow us to perceive, predict, comprehend, and react appropriately to changing situations in the space domain.

HSI ground-based observation systems collect spectro-temporal signatures of Unresolved Resident Space Objects (URSOs).

The high-spectral resolution allows for the extraction of properties/parameters of the URSO using spectral domain information even
 though it cannot be resolved in the spatial domain.

\section*{Acknowledgments}

\section*{The DeBlasio Lab}

Luis Cedillo (UG, Facet-NN/LR)
Demetrius Hernandez (UG, Minimizers)
Taposh Sarkar (PhD, USROs)
Fernando Sepulveda (UG)
Md. Easin Hasan (former, BWA)

Hector Richart-Ruiz (former)

\section*{The Current Collaborators}

Miguel Velez-Reyes
Arizbe Najera

\section*{Contact}
deblasiolab.org
Y) danfdeblasio

\section*{Previous Collaborators}


\section*{Carl Kingsford}

Fiyinfoluwa Gbosibo
Kwanho Kim
Guillaume Marçais

\section*{Funding}
```

