Building an Automated Scientist: Using Machine Learning to Configure Algorithms

Dan DeBlasio

deblasiolab.org
(9) danfdeblasio

Modern science is computational

Modern science is increasingly computational.

- Particularly in genomics, where experiments have multiple computational steps.
- Domain problems have in turn lead to algorithmic advances.

More people are relying on computational tools.

Parameter Advising for Bioinformatics

Bioinformatics software

Common themes arise in bioinformatics (and many other domain) problems.

- Many are computationally inefficient to solve exactly.
- Many tools developed for these problems.
- Each tool has many parameters whose values have an impact on the output.

Tunable parameters

Quant
Perform dual-phase, mapping-based estimation of
transcript abundance from RNA-seq reads
salmon quant options:
basic options:
-v [--version]
-h [--help]
-i [--index] arg
-1 [--libType] arg
r [--unmatedReads] arg
-1 [--mates1] arg
-2 [--mates2] arg
-o [--output] arg
-discardOrphansQuasi
--allowOrphansFMD

-seqBias

-gcBias
-p [--threads] arg
--incompatPrior arg
-g [--geneMap] arg
print version string
produce help message
Salmon index
Format string describing the library type
List of files containing unmated reads of (e.g. single-end reads)
File containing the \#1 mates
File containing the \#2 mates
Output quantification file.
[Quasi-mapping mode only] : Discard orphan mappings in quasi-mapping mode. If this flag is passed then only paired mappings will be considered toward quantification estimates. The default behavior is to consider orphan mappings if no valid paired mappings exist. This flag is independent of the option to write the orphaned mappings to file (--writeOrphanLinks)
[FMD-mapping mode only] : Consider orphaned reads as valid hits when performing lightweight-alignment. This option will increase sensitivity (allow more reads to map and more transcripts to be detected), but may decrease specificity as orphaned lignments are more likely to be spurious.
Perform sequence-specific bias correction.
[beta for single-end reads] Perform fragment GC bias correction
The number of threads to use concurrently.
This option sets the prior probability that an alignment that disagrees with the specified library type (--libType) results rom the true fragment origin. Setting this to 0 specifies that alignments that disagree with the library type should be "impossible", while setting it to 1 says that alignments that disagree with the library type are no less likely than those that do
File containing a mapping of transcripts to genes. If this file is provided Salmon will output both quant.sf and quant.genes.sf files, where the latter contains aggregated gene-level abundance estimates. The transcript to gene mapping should be provided as either a GTF file, or a in a simple tab-delimited format where each line contains the name of a transcript and the gene to which it belongs separated by a tab. The extension of the file is used to determine how the file should be parsed. Files ending in '.gtf', '.gff' or '.gff3' are assumed to be in GTF format; files with any other extension are assumed to be in the simple format. In GTF / GFF format, the "transcript_id" is assumed to contain the transcript identifier and the "gene_id" is assumed to contain the corresponding gene identifier.
If this option is provided, then the quasi-mapping results will be written out in SAM-compatible format. By default, output will be directed to stdout, but an alternative file name can be provided instead.

Tunable parameters

Tunable parameters

Most users rely on the default parameter settings,

- which are meant to work well on average,
- but the most interesting examples are not typically "average".

> .. Yl-lhqflspssnqrtdqyggsvenrarlvlevvdavcnewsad-RIGIRVSPigtfq
> ... kP-LGVKLPPyf--dlvhfdimaeilnqfpltyvsnv-nsig----nglfidpeaesv

> ... yl-plqflnpyynkrtdkyggslenrarfwletlekvkhavgsdcAIATRF---GVdt
> ... kvPLYVKLSPnv-tdivpiakaveaagadgltmintl---------mgvrfdlktrqp ...
> . . gsvenrarlvlevvdavcnewsad-RIGIRVSPigtfqnvdngpnee--adalyl---
> ... ydfeatekllke-----vftfftk-PLGVKLPPyf------------------
> alternate $\cdot \cdots$ gsienrarftlevvdalveaighe-KVGLRLSPygvfnsmsggaetgivaqyayvage
> ... gslenrarfwletlekvkhavgsdcAIATRFGV----------------dtvygpgq
> ... tdpevaaalvka-----ckavskv-PLYVKLSPnvt--------------divpiaka ...

The default parameter choices misaligns this region of the sequences.

Tunable parameters

It's not just a problem in computational biology!

SATzilla: Portfolio-based Algorithm Selection for SAT

$\operatorname{Lin~Xu}$

Frank Hutter
Holger H. Hoos
Kevin Leyton-Brown
Department of Computer Science
University of British Columbia
201-2366 Main Mall, BC V6T 1Z4, CANADA

Concertio Launches Optimizer Studio to Help Performance Engineers and IT Professionals Achieve Peak System Performance
xulin730@cs.ubc.cA
HUTTER@CS.UBC.CA
hoos@cs.ubc.cA
KEvinlb@cs.ubc.cA
by admin | Feb 22, 2018 | News 10 comments

Swarm and Evolutionary Computation 1 (2011) 19-31

Invited paper
Parameter tuning for configuring and analyzing evolutionary algorithms A.E. Eiben*, S.K. Smit ${ }^{1}$

ARTICLEINFO ABSTRACT

ParamILS: An Automatic Algorithm Configuration Framework

Frank Hutter
Holger H. Hoos
Kevin Leyton-Brown
University of British Columbia, 2366 Main Mall
Vancouver, BC, V6TIZ4, Canada
Thomas Stützle
Université Libre de Bruxelles, CoDE, IRIDIA
Av. F. Roosevelt 50 B-1050 Brussels, Belgium

Submitued 0609; published 1009
Journal of Arififcial Inteligence Research 36 (2009) 267-306

ARTICLE MNFO

Parameter advising framework

Steps of advising:

- An advisor set of parameter choice vectors is used to obtain candidates.
- Solutions are ranked based on the accuracy estimation.
- The highest ranked candidate is returned.

Parameter advising framework

Steps of advising:

- An advisor set of parameter choice vectors is used to obtain candidates.
- Solutions are ranked based on the accuracy estimation.
- The highest ranked candidate is returned.

Parameter advising framework

Components of an advisor:

- An advisor set of parameter choice vectors.
- An advisor estimator to rank solutions.

Parameter advising framework

Components of an advisor:

- An advisor set of parameter choice vectors.

A good advisor set:

- Small
- Representative
- An advisor estimator to rank solutions.

Parameter advising framework

Components of an advisor:

- An advisor set of parameter choice vectors.
- An advisor estimator to rank solutions.

```
A good advisor estimator
    - Efficient
    - Rank Solutions Well
```


Background:
 Sequence Alignment

sequence alignment

Given
-a pair of sequences S_{1}, S_{2} with lengths m and n , and -an alignment objective function
find an $2 \times L$ matrix

- where $\max (m, n)<L<m+n$,
-each row represents one sequence from the set with inserted gaps, and - is optimal under the objective function.

Edit Distance

A specific version of the the alignment problem

- the objective function is simply the count of operations:
- replace one character with another -- R
- delete a character from the first string -- D
- insert a character from the second string -- I

Example: $S_{1}=$ baseball $\& S_{2}=$ ballcap.

> RRR DR
> baseball ballca p

- 5 operations: change $\mathrm{s} \rightarrow \mathrm{l}, \mathrm{e} \rightarrow \mathrm{l}, \mathrm{b} \rightarrow \mathrm{c}$, delete $\mathrm{l}, \mathrm{l} \rightarrow \mathrm{p}$

Alignment

We associate a similarity score with each pair of aligned characters:

- for characters $x, y \in \Sigma \cup\{-\}$
- define $\delta(x, y)$ to be the similarity of x and y

Let the score, Δ, of an alignment $\left(A=\left\{S^{\prime}{ }_{1}, S^{\prime}{ }_{2}\right\}\right)$, be defined as

$$
\Delta(A)=: \sum_{1 \leq i \leq\left|S_{1}^{\prime}\right|} \delta\left(S_{1}^{\prime}[i], S_{s}^{\prime}[i]\right)
$$

Goal of alignment is to maximize that sum

Alignment

δ for edit distance

	-	a	b	c	e	1	p	s
-		-1	-1	-1	-1	-1	-1	-1
a	-1	0	-1	-1	-1	-1	-1	-1
b	-1	-1	0	-1	-1	-1	-1	-1
c	-1	-1	-1	0	-1	-1	-1	-1
e	-1	-1	-1	-1	0	-1	-1	-1
1	-1	-1	-1	-1	-1	0	-1	-1
p	-1	-1	-1	-1	-1	-1	0	-1
s	-1	-1	-1	-1	-1	-1	-1	0

Needleman-Wunsch

brute-force: compute all possible alignments and score them

- would take exponential time to compute the optimal alignment
using dynamic programming Needleman and Wunsch [1970] found that the optimal alignment can be computed in $O(m n)$-time.

Needleman-Wunsch

Dynamic programming, generally, works by:

- solving sub-problems,
- storing the results, then
- combine the solutions to find the answer.

The sub-problem we will solve?

- Given two strings S[1...n] and T[1...m], find the best alignment

Needleman-Wunsch

Dynamic programming, generally, works by:

- solving sub-problems,
- storing the results, then
- combine the solutions to find the answer.

The sub-problem we will solve?

- Given two strings S[1...n] and T[1...m], find the best alignment given the best alignments of:

$$
\begin{aligned}
& -S[1 \ldots(n-1)] \text { and } T[1 \ldots m] \text {, } \\
& -S[1 \ldots n] \text { and } T[1 \ldots(m-1)] \text {, and } \\
& -S[1 \ldots(n-1)] \text { and } T[1 \ldots(m-1)]
\end{aligned}
$$

Needleman-Wunsch

Define an $n \times m$ array V

- the cell $V(i, j)$ will hold the score of the best sub alignments of $S[1 \ldots i]$ and $T[1 \ldots j]$

The recurrence relation (the base of any dynamic program)

$$
V(i, j)=\max \begin{cases}V(i-1, j-1)+\delta(S[i], T[j]) & \text { match/mismatch } \\ V(i-1, j)+\delta(S[i],-) & \text { delete } \\ V(i, j-1)+\delta(-, T[j]) & \text { insert }\end{cases}
$$

The initialization is:
$V(0,0)=0$
$V(0, j)=V(0, j-1)+\delta(-, T[j])$
$V(i, 0)=V(i-1,0)+\delta(S[i],-)$

Needleman-Wunch

$$
\begin{aligned}
& \delta(-, x)=-1 \text { for } x \in \Sigma \\
& \delta(x,-)=-1 \text { for } x \in \Sigma \\
& \delta(x, y)=1 \text { for } y=x \\
& \delta(x, y)=-1 \text { for } y \neq x
\end{aligned}
$$

Needleman-Wunch

$$
\begin{aligned}
& \delta(-, x)=-1 \text { for } x \in \Sigma \\
& \delta(x,-)=-1 \text { for } x \in \Sigma \\
& \delta(x, y)=1 \text { for } y=x \\
& \delta(x, y)=-1 \text { for } y \neq x
\end{aligned}
$$

		A	A	C	C	C	G
	0						
A	-1						
A		O	cos al AA'	f the nme d			
G							
C							
C							

Needleman-Wunch

$$
\begin{aligned}
& \delta(-, x)=-1 \text { for } x \in \sum \\
& \delta(x,-)=-1 \text { for } x \in \Sigma \\
& \delta(x, y)=1 \text { for } y=x \\
& \delta(x, y)=-1 \text { for } y \neq x
\end{aligned}
$$

	A		A	C	C	C	G
	0			-	f the		
A	-1						
A	-2						
G	-3						
G	-4						
C	-5						
C	-6						

Needleman-Wunch

$$
\begin{aligned}
& \delta(-, x)=-1 \text { for } x \in \sum \\
& \delta(x,-)=-1 \text { for } x \in \Sigma \\
& \delta(x, y)=1 \text { for } y=x \\
& \delta(x, y)=-1 \text { for } y \neq x
\end{aligned}
$$

		A	A	C	C	C	G
	0	-1	-2	-3	-4	-5	-6
A	-1	The cost of the optimal alignment of "A" and "A"	The cost of the optimal alignment of "A" and "A"				
A	-2						
G	-3						
G	-4						
C	-5						
C	-6						

Needleman-Wunch

$\delta(-, x)=-1$ for $x \in \Sigma$
$\delta(x,-)=-1$ for $x \in \Sigma$
$\delta(x, y)=1$ for $y=x$
$\delta(x, y)=-1$ for $y \neq x$
$V(i, j)=\max \begin{cases}V(i-1, j-1)+\delta(S[i], T[i]) & \text { match/mismatch } \\ V(i-1, j)+\delta(S[i],-) & \text { delete } \\ V(i, j-1)+\delta(-, T[j]) & \text { insert }\end{cases}$

Needleman-Wunch

$\delta(-, x)=-1$ for $x \in \Sigma$
$\delta(x,-)=-1$ for $x \in \Sigma$
$\delta(x, y)=1$ for $y=x$
$\delta(x, y)=-1$ for $y \neq x$

		A	A	C	C	C	G
	0	-1	-2		-4	-5	-6
A	-1						
A	-2						
G	-3						
G	-4						
C	-5						
C	-6						

Needleman-Wunch

$$
\begin{aligned}
& \delta(-, x)=-1 \text { for } x \in \sum \\
& \delta(x,-)=-1 \text { for } x \in \Sigma \\
& \delta(x, y)=1 \text { for } y=x \\
& \delta(x, y)=-1 \text { for } y \neq x
\end{aligned}
$$

	A		A	C	C	C	G
	0	-1	-2	-3	-4	-5	-6
A	-1	1					
A	-2						
G	-3						
G	-4						
C	-5						
C	-6						

Needleman-Wunch

$\delta(-, x)=-1$ for $x \in \Sigma$
$\delta(x,-)=-1$ for $x \in \Sigma$
$\delta(x, y)=1$ for $y=x$
$\delta(x, y)=-1$ for $y \neq x$

	A		A	c	c	c	G
	0	-1	-2	-3	-4	-5	-6
A	-1	1	0	-1	-2	-3	-4
A	-2	0	2	1	0	-1	-2
G	-3	-1	1	1	0	-1	0
G	-4	-2	0	0	0	-1	0
C	-5	-3	-1	1	1	1	0
c	-6	-4	-2	0	2	2	1

Needleman-Wunch

$\delta(-, x)=-1$ for $x \in \Sigma$
$\delta(x,-)=-1$ for $x \in \Sigma$
$\delta(x, y)=1$ for $y=x$
$\delta(x, y)=-1$ for $y \neq x$

		A	A	C	C	C	G
		-1	-2	-3	-4	-5	-6
A							
A	-2						
G	-3						
G	-4						
C	-5						
C	-6						

Needleman-Wunch

$\delta(-, x)=-1$ for $x \in \Sigma$
$\delta(x,-)=-1$ for $x \in \Sigma$
$\delta(x, y)=1$ for $y=x$
$\delta(x, y)=-1$ for $y \neq x$

Needleman-Wunch

$\delta(-, x)=-1$ for $x \in \Sigma$
$\delta(x,-)=-1$ for $x \in \Sigma$
$\delta(x, y)=1$ for $y=x$
$\delta(x, y)=-1$ for $y \neq x$
AAC-CCG
AAGGCC-

Needleman-Wunch

$\delta(-, x)=-1$ for $x \in \Sigma$
$\delta(x,-)=-1$ for $x \in \Sigma$
$\delta(x, y)=1$ for $y=x$
$\delta(x, y)=-1$ for $y \neq x$
AAC-CCG
AAGGCC-

AA-CCCG
AAGGCC-

| | A | A | C | C | C | G | |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | 0 | -1 | -2 | -3 | -4 | -5 | -6 |
| A | -1 | 1 | 0 | -1 | -2 | -3 | -4 |
| A | -2 | 0 | 2 | 1 | 0 | -1 | -2 |
| G | -3 | -1 | 1 | 1 | 0 | -1 | 0 |
| G | -4 | -2 | 0 | 0 | 0 | -1 | 0 |
| C | -5 | -3 | -1 | 1 | 1 | 1 | 0 |
| C | -6 | -4 | -2 | 0 | 2 | 2 | 1 |

Needleman-Wunch

What about the running time and memory requirements?

- Filling in each cell of the table:

O(1)-time, O(1)-space

- Table is $n \times m$
- Filling in the table:
$O(m n)$-time, $O(m n)$-space
- Traceback?
- Each column of the alignment:

$$
O(1) \text {-time }
$$

- Maximum Alignment Length:

$$
O(m+n)
$$

(times the number of optimal alignments)

AAC-CCG AAGGCC-

A A - C C C G AAGGCC-

A

A

G

G

C

C

| | A | A | C | C | C | G | |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | 0 | -1 | -2 | -3 | -4 | -5 | -6 |
| A | -1 | 1 | 0 | -1 | -2 | -3 | -4 |
| A | -2 | 0 | 2 | 1 | 0 | -1 | -2 |
| G | -3 | -1 | 1 | 1 | 0 | -1 | 0 |
| G | -4 | -2 | 0 | 0 | 0 | -1 | 0 |
| C | -5 | -3 | -1 | 1 | 1 | 1 | 0 |
| C | -6 | -4 | -2 | 0 | 2 | 2 | 1 |

Alignment

δ in the previous example

	-	A	C	G
		-1	-1	-1
A	-1	1	-1	-1
C	-1	-1	1	-1
G	-1	-1	-1	1

AAC-CCG AAGGCC-

Alignment

change the δ

		-	A	C
	G			
-		0	0	0
A	0	2	-1	-1
C	0	-1	2	-1
\mathbf{G}	0	-1	-1	2

AA--CCCG AAGGCC--

Alignment

We can find δ s that can produce any of these alignments:
AAC-CCG
AAGGCC-
AA--CCCG
AACCCG
AAGGCC--
AAGGCC

How do we know which one of these is best?

Alignment

So far we have seen that if you have two sequences

- if you define the replacement score (δ)
- you can find an optimal solution
- in linear time.

What if you have multiple sequences? Can it still be solved exactly*?

Multiple sequence alignment

A fundamental problem in bioinformatics.

- NP-Complete
- many popular aligners
- many parameters whose values affect the output
- no standard metric for measuring accuracy without ground truth
$\left.\begin{array}{|l|l|}\hline \begin{array}{l}\text { Input Sequences } \\ \text { AGTPNGNP } \\ \text { AGPGNP } \\ \text { AGTTPNGNP } \\ \text { CGTPNP } \\ \text { ACGTUNGNP }\end{array} & \rightarrow \text { Aligner }\end{array} \rightarrow \begin{array}{l}\text { Aligned Sequences } \\ \text { A-GT-PNGNP } \\ \text { A-G--P-GNP } \\ \text { A-GTTPNGNP } \\ - \text { CGT-PN--P } \\ \text { ACGT-UNGNP }\end{array}\right]$

Parameter advising framework

Components of an advisor:

- An advisor set of parameter choice vectors.
- An advisor estimator to rank solutions.

Accuracy estimation

Alignment accuracy is measured with respect to a reference alignment.

$$
\begin{aligned}
& \text { computed } \\
& \text { alignment } \\
& \begin{array}{ccc}
\text { a D E } ~ & -s \cdots & \\
\text { d S R - }-\mathrm{d} \cdots & \text { Accuracy }
\end{array}
\end{aligned}
$$

- accuracy is the fraction of substitutions from the reference that are in the computed alignment,
- measured on the core columns of the reference.

Accuracy estimation

Our estimator Facet ("Feature-based ACcuracy EsTimator")

- a polynomial on feature functions
- efficiently learns the coefficients from examples
- uses efficiently computed novel features

Feature functions are the key:
uninformative features \rightarrow uninformative estimator

Accuracy estimation

The estimator $E(A)$ is a polynomial in the feature functions $f_{i}(A)$.
linear estimator

$$
E(A):=\sum_{i} c_{i} f_{i}(A)
$$

quadratic estimator

$$
E(A):=\sum_{i} c_{i} f_{i}(A)+\sum_{i} \sum_{j} c_{i j} f_{i}(A) f_{j}(A)
$$

Always linear in the coefficients.

Learning the estimator

We learn the estimator using examples consisting of

- an alignment, and
- its associated true accuracy.

Learning finds optimal coefficients that either fit

- accuracy values of the examples, or
- accuracy differences on pairs of examples,
- by solving a linear pr quadratic program.

Learning the estimator

$$
\begin{aligned}
& e_{a, b} \geq E(b)-E(a)=\sum_{i} c_{i}\left(f_{i}(b)-f_{i}(a)\right) \\
& e_{a, b} \geq 0
\end{aligned}
$$

$\forall a, b \in$ Examples:
Accuracy (a) > Accuracy (b)

Feature functions

We use protein alignment feature functions that

- are fast to evaluate,
- measure novel properties,
- use non-local information,
- involve secondary structure.

Feature functions

There are three types of secondary structure

- a-helix,
- β-strand,
- coil.

Feature functions

Features based only on the sequence information

- Amino Acid Identity
- Average Substitution Score
- Information Content

Features using predicted secondary structure

- Secondary Structure Percent Identity
- Secondary Structure Agreement
- Secondary Structure Blockiness
- ...

Secondary structure blockiness

A block B in alignment A is

- an interval of at least l columns,
- a subset of at least k rows,
- with the same secondary structure for all residues in B.

Secondary structure blockiness

A packing P for alignment A is

- a set of blocks from A,
- whose columns are disjoint.

The value of P is the number of substitutions it contains.
The Blockiness feature is the maximum value of any packing.

Secondary structure blockiness

Theorem (Evaluating Blockiness)
Blockiness can be computed in O(mn) time, for an alignment with m rows and n columns.

Algorithm translates the problem into finding the longest path in a directed acyclic graph.

Accuracy estimation

Best features trend well with accuracy.

Facet estimator has less spread than its features.

Accuracy estimation

For parameter advising, an estimator should have high slope and low spread.

high slope,
high spread

low slope,
low spread

medium slope, low spread

Facet's slope and spread is best for advising

Exploiting non-linearity

While we designed the features to scale linearly with accuracy, some show some non-linear behavior when plotted.

- Advanced machine learning allowed for the use of a neural network predictor.
- We also produced a much larger training set (now $>14 \mathrm{M}$ alignments).

Exploiting non-linearity

Previous Result

Neural Network

Linear Regression

Modern techniques and larger training also lead to a more accurate linear model.

Advising for Multiple Sequence Alignment

Facet-NN and Facet-LR outperform original Facet on the advising task.

Applying Advising to Transcript Assembly

Transcript assembly (TA)

Given

- a set of RNA-seq reads aligned to a reference genome, and
- a set of thresholds for transcript construction
find:
- a set of constructed transcripts that
reference genome
 explains the reads.

Transcript assembly

A is fundamental in transcriptomics.

- It's computationally difficult.
- It's easily impacted by choices of parameter values.
- There is no readily available way to confirm an assembly's accuracy.
reference genome

Transcript assembly

For the human genome there is a reference transcriptome.

- Contains a large set of biologically verified transcripts.
- More than will be seen in a single experiment.
- Missing novel transcripts for any given experiment.

Area Under the Curve (AUC) can be calculated using the reference transcriptome.

- Map assembled transcripts to the reference.
- Threshold the quality score from the assembler to get precision/sensitivity.
- Commonly used to compare assembler quality.

Transcript assembly advising

Advisor estimator:

- area under the curve

Advisor set:

- the number of tunable parameters is very large
- cannot exhaustively explore the space to find representative parameter vectors

Finding an advisor set

Use information about parameter behavior to guide advisor set construction.

- Tested the influence of each parameter.
- Single maximum in the regions tested.

Finding an advisor set

Use information about parameter behavior to guide advisor set construction.

- Tested the influence of each parameter.
- Single maximum in the regions tested.
- Many parameters influence AUC.

0.20044000 6000 8000 10000
minimum transcript length base

Finding an advisor set

Parameter curve smoothness and single maxima help parameter selection.

- Iterative optimization will work well.
- Process is slow.

[DKK, WCB@ICML 2019]

Finding an advisor set

We can use coordinate ascent to find optimal parameter vectors.

- Training samples should cover the range of expected input.
- Settings are found for all 18 tunable parameters.
- Collection of produced vectors is advisor set.
- The set is precomputed and doesn't impact the advising time.

Scallop advising

Scallop advising

- all aligned RNA-seq from ENCODE
- variety of aligners
- example of performance in general

Scallop advising

- 1595 RNA-Seq from SRA
- aligned using STAR
- example of high-throughput performance

StringTie advising

11.1\% average increase in accuracy for Coordinate Ascent

StringTie advising

ENCODE 65 Dataset

- all aligned RNA-seq from ENCODE
- variety of aligners
- example of performance in general

Transcript assembly advising

Parameter advising increases AUC for transcript assembly.

- Coordinate ascent is useful to advisor sets.
- Improvements are seen for both Scallop and StringTie.

Minimizer Schemes for Genome Analysis

Sequence Similarity

Sequence similarity is used in many contexts:

- comparing web pages
- suggestion systems
- finding plagiarism
- matching sequencing reads
- binning genetic material

Minimizer Schemes

Roberts, et al. (2004) introduced minimizer schemes as a way to decrease the time needed for sequence overlap computation

Minimizer Schemes

Roberts, et al. (2004) introduced minimizer schemes as a way to decrease the time needed for sequence overlap computation

Minimizer Schemes

Roberts, et al. (2004) introduced minimizer schemes as a way to decrease the time needed for sequence overlap computation

Minimizer Schemes

Roberts, et al. (2004) introduced minimizer schemes as a way to decrease the time needed for sequence overlap computation

Minimizer Schemes

Roberts, et al. (2004) introduced minimizer schemes as a way to decrease the time needed for sequence overlap computation
$\mathrm{O}\left(\mathrm{n}^{2}\right)$ alignments!

Minimizer Schemes

Roberts, et al. (2004) introduced minimizer schemes as a way to decrease the time needed for sequence overlap computation

Minimizer Schemes

Minimizer schemes have two special properties:

- two sequences with a long exact match must select the same k-mers
- there are no large gap between selected k-mers

Used in k-mer counting, de Brujin graph construction, data structure sparsification, etc.

Minimizer Schemes

For a windows of ω consecutive k-mers from a sequence S, a minimizer scheme selects the minimum according to an ordering o as a representative

Minimizer Schemes

For a windows of ω consecutive k-mers from a sequence S, a minimizer scheme selects the minimum according to an ordering o as a representative

Minimizer Schemes

For a windows of ω consecutive k-mers from a sequence S, a minimizer scheme selects the minimum according to an ordering o as a representative

Minimizer Schemes

An extra example

$$
\underbrace{\text { Sen }}_{\text {C C A A C C C B B B B C C }}
$$

C CAACCCB
CAACCCBB

Minimizer Schemes

The ordering can impact how well the minimizer scheme performs.
We measure performance using density:

- Normalized count of minimizer locations in S

Minimizer Schemes

The ordering can impact how well the minimizer scheme performs.
We measure performance using expected density:

- Normalized count of minimizer locations in B_{L}
B_{L} is the de Brujin sequence of order L, it contains

Storing a universal set is inefficient

Stored using a sequence trie, high complexity leads to large files

Storing a universal set is inefficient

Stored using a sequence trie, high complexity leads to large files

Our learning method

Task -- learn the minimizer schemes using back propagation
-Our task is to create a network topology is complex enough to encode existing schemes, but not so complicated that it provides extreme training times.

- One issue that arises is that for small values of w and k there may not be enough information to train the network completely since there are only so many unique windows.

w outputs

One character to σ inputs
$=\left(p_{0}, p_{1}, \ldots p_{w-1}\right)$ probability that minimizer $(\mu)=i$ opn optima minimizer scheme

A note about Neural Networks

Used Decision Trees and Dense Neural Networks.

The number of nodes to encode minimizers is significantly larger with decision trees than with neural network implementations.

Performance of the networks

A trained model has a shorter k-mer lookup time and smaller memory footprint than a naïve implementation of minimizers.

Local vs. Forward vs. Minimizer Schemes

Assume we're going to rewrite it $F(M) \rightarrow m$ where M is the ordered set of k-mers from the window, and m is the returned k-mer.

What if we relax the rules a bit:

- Minimizer Schemes -- choose the $m=\arg \min _{m^{\prime} \in M}\left(O\left(m^{\prime}\right)\right)$
- Forward Schemes -- choose any m such that for all M ' that can proceed M the choice is at the same position or later
- Local Schemes -- choose any m

Minimizer \subset Forward \subset Local

Some of our other work

Multiple sequence alignment benchmark set bias identification

- Fransisco Parra (Senior/REU), Luis Cedillo (Sophomore)

Automatic parameter configuration for additive manufacturing

- Fernando Sepulveda (Freshman)
- Collaboration with faculty in Electrical and Computer Engineering

Identifying unresolved space objects using ground-based hyperspectral imaging

- Taposh Sarker (Graduate Student)
- Collaboration with faculty in Electrical and Computer Engineering

Acknowledgments

The DeBlasio Lab

Luis Cedillo (UG, Facet-NN/LR)
Demetrius Hernandez (UG, Minimizers)
Taposh Sarkar (PhD, USROs)
Fernando Sepulveda (UG, Additive Manufacturing)
Md. Easin Hasan (former MS, BWA)

Hector Richart-Ruiz (former UG)

The Current Collaborators

Miguel Velez-Reyes
Arizbe Najera

Contact

deblasiolab.org
(V) danfdeblasio

Previous Collaborators

John Kececioglu

Travis Wheeler (Montana)
Jen Wisecaver (Purdue)

Computational
Biology
Department

Carnegie Mellon University School of Computer Science

Carl Kingsford

Fiyinfoluwa Gbosibo (visiting UG)
Kwanho Kim (MS)
Guillaume Marçais

Funding

